ESQC 2024

By Simen Kvaal Mathematical Methods Lecture 3

Where to find the material SCAN ME

- Alternative 1:
	- [www.esqc.org,](http://www.esqc.org/) go to "lectures"
	- Find links there
- Alternative 2:
	- Scan QR code
	- simenkva.github.io/esqc_material

Infinite Dimensions and Functional Analysis

Required for the formulation of physical laws

Functional analysis

- The study of (mostly) infinite dimensional vector spaces
	- Hilbert, Banach (and more)
	- *Function spaces*
- Linear transformations
	- In infinite dimensions strange things happen!
- Applications:
	- Quantum mechanics
	- Partial differential equations
	- Optimization and control theory

Examples of infinite dimensions

- The space of cake recipe ingredients list (from yesterday)
- The space of *all* polynomials, unlimited degree
- A space of sequences

$$
\text{seq} = \{c : \mathbb{N} \to \mathbb{F}\}, \quad c = (c_0, c_1, c_2, \cdots)
$$

• The space of *square integrable functions*

$$
L^{2}(\mathbb{R}^{N}) = \left\{ f: \mathbb{R}^{N} \to \mathbb{C} \mid \int_{\mathbb{R}^{N}} |f(x)|^{2} d^{N} x < +\infty \right\}
$$

Approximations of functions

For infinite basis expansions

Quantum mechanics!

How to think about something like $L^2(\mathbb{R})$

- A function over \mathbb{R} infinite number of values!
- We can imagine an increasingly long finite vector of samples
- In quant chem: *a finite basis set of functions*

$$
\psi(x) = \sum_{i=1}^{n} \psi_n \phi_n(x) \quad |\psi\rangle = \sum_{i=1}^{n} \psi_n |\phi_n\rangle
$$

What distinguishes the examples?

- Consider the question:
	- Which functions are close to each other?
- Use for different notions of "closeness"
- *Extremely valuable!*

Hilbert and Banach spaces

The spaces of partial differential equations

Now it is getting a little more abstract

A metric embodies concept of distance

Definition 22: Metric

Let M be a set. A function $f : S \times S \to \mathbb{R}$ is a *metric* if it satisfies the following axioms:

1. $d(x, y) = d(y, x)$ symmetry

2. $d(x, y) \ge 0$, and $d(x, y) = 0$ if and only if $x = y$ positivity and nondegeneracy

3. $d(x, y) \leq d(x, z) + d(z, y)$

triangle inequality

The pair (M, d) is a *metric space*.

Norms embody concept of length

$$
d(x, y) = ||x - y||
$$

Norms define
metrics

Inner products give concept of angles

Definition 58: Inner product

An *inner product* $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ is a map which satisfies the following axioms:

1.
$$
\langle x, x \rangle \ge 0
$$
, $\langle x, x \rangle = 0$ if and only if $x = 0$
\n2. $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ *linearity*
\n3. $\langle \alpha y + \beta z, x \rangle = \overline{\alpha} \langle y, x \rangle + \overline{\beta} \langle z, x \rangle$ *conjugate linearity*
\n4. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ *hermiticity*
\n4. $\langle x, y \rangle = \overline{\langle y, x \rangle}$ *hermiticity*
\n4. $\langle x, y \rangle = ||x - y|| = \langle x - y, x - y \rangle^{1/2}$ *Inner produ*
\n*divergence*

give metrics,

Icts

too

Two metrics in the plane (from norms)

$$
d(\mathbf{x}, \mathbf{y}) = \sqrt{|x_1 - y_1|^2 + |x_2 - y_2|^2}
$$

$$
d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2|
$$

Definition 53: Banach and Hilbert space

A Banach space is a complete normed vector space. A Hilbert space is a complete inner product space.

- In all cases, *metric spaces*
- The spaces of quantum mechanics, DFT, coupled-cluster theory ...
- Infinite dimensional (separable) Hilbert space: *infinite orthonormal basis*

$$
\psi(x) = \sum_{i=1}^{\infty} \psi_n \phi_n(x)
$$

What can we do with a Banach space?

- 1. From norm to *open sets*
	- "A topology"
- 2. From open sets to *convergence of sequences, completeness*
- 3. From completeness to *continuity of functions*
- *4. Differentiability of functions*

The metric/norm is the foundation for calculus, vector calculus, calculus of variations ...

L^p spaces

• For $1 \leq p < \infty$

$$
f: \Omega \to \mathbb{F} \qquad ||f||_p = \left(\int_{\Omega} |f(x)|^p \ dx\right)^{1/p}
$$

• This is a Banach space:

$$
L^p(\Omega; \mathbb{F}) = \left\{ f : \Omega \to \mathbb{F} \mid ||f||_p < +\infty \right\}
$$

A notebook example

- How different norms measure closeness of functions.
- This shows us that different norms can be useful

More examples

- **Banach space**:
	- Example:

 $C^0[0, 1] = \{f : [0, 1] \to \mathbb{R} \mid f \text{ continuous}\},\$

 $||f|| = \max_{x \in [0,1]} |f(x)|$

- **Hilbert space**:
	- Example:

$$
L^{2}(\Omega; \mathbb{C}) = \left\{ f : \Omega \to \mathbb{C} \mid \int_{\Omega} |f(x)|^{2} dx < +\infty \right\}
$$

$$
\langle f, g \rangle = \int_{\Omega} \overline{f(x)}g(x) dx
$$

p spaces

• Discrete versions of L^p

$$
u : \mathbb{N} \to \mathbb{F}
$$

$$
||u||_p = \left(\sum_{i=0}^{\infty} |u_i|^p\right)^{1/p}
$$

$$
\ell_p(\mathbb{N}; \mathbb{F}) = \left\{u : \mathbb{N} \to \mathbb{F} \mid ||u||_p < +\infty\right\}
$$

• *A Hilbert space:*

$$
\ell_2(\mathbb{N};\mathbb{F}), \quad \langle u,v\rangle_2 = \sum_{i=1}^{\infty} \overline{u}_i v_i
$$

The archetypal (separable) Hilbert space

- Recall that in finite dimensions, \mathbb{F}^n was the archetypal Hilbert space
- In infinite dimensions:

$$
\ell_2 = \mathbb{F}^{\infty}, \quad u = [u_1, u_2, \cdots], \quad \sum_{i=1}^{\infty} |u_i|^2 < +\infty
$$

$$
\langle u, v \rangle_{\ell_2} = \sum_{i=1}^{\infty} \overline{u_i} v_i
$$

• *All Hilbert spaces are isomorphic to this space, when an (infinite) orthonormal basis is chosen*

Linear transformations over Banach space

- In finite dimensions: all operators associated with *matrices*
- No longer true!
- Bounded vs. unbounded transformations
- Key feature:
	- Bounded transformations are *continuous*
	- Unbounded transformations are *discontinuous*
	- Unbounded transformations *usually not defined for all vectors*

Definition 61: Bounded linear transformations

Let V and W be Banach spaces over F, and let $D(T) \subset V$ be a linear subspace. Let $T: V \to W$ be a linear transformation, i.e., for all $u, v \in D(T)$ and all $\alpha \in \mathbb{F}$,

 $T(\alpha u) = \alpha T u$,

and

$$
T(u + v) = Tu + Tv.
$$

The linear space $D(T)$ is called the *domain of T*, and it may or may not be all of T. Let $||T||_{L(V,W)}$ be the norm ("operator norm") defined by

$$
||T||_{L(V,W)} = \sup \left\{ \frac{||Tu||_W}{||u||_V} \mid 0 \neq u \in D(T) \right\}.
$$
 (5.29)

If $||T||_{L(V,W)} < +\infty$ and $D(T) = V$, then T is a bounded, or countinuous, linear transformation from V to W .

Example 26: Example of unbounded linear transformation

Let $\ell_2(\mathbb{N}, \mathbb{R})$ be the space of square summable sequences of real numbers, i.e., $u = (u_n) \subset \mathbb{R}$ with

$$
\sum_{n=1}^{\infty}u_n^2<+\infty.
$$

Let A be the operator that is defined by

$$
(Au)_n = nu_n,
$$

i.e., each element in the sequence is multiplied by *n*. Let $(e_m)_n = \delta_{m,n}$ be the sequence which is zero everywhere except for the m'th position, where we have a 1. Then Ae_m = $(0,0,0,\dots,m,\dots)$ where the *m* is in the *m*'th position. We have $||Ae_m|| = m$, which grows to infinity as $m \to +\infty$. Therefore A is not bounded.

Furthermore, the sequence given by $u_n = n^{-1}$ is square summable, that is,

$$
||u||^2 = \sum_n n^{-2} < +\infty.
$$

However, $Au = (1, 1, 1, 1, ...)$ which is clearly not square summable. So A cannot be defined on all of $\ell_2(\mathbb{N}, \mathbb{R})$.

Example 27: Unbounded operator

Let $u_{\alpha} \in L^2(\mathbb{R})$ be given by

$$
u_{\alpha}(x) = N(\alpha) \exp(-\alpha x^2/2). \tag{5.30}
$$

Here, $N(\alpha) = (\alpha/\pi)^{1/4}$ is such that $||u_{\alpha}|| = 1$. Let $\hat{D} = \partial_{x}$, and compute

$$
\partial_x u_\alpha(x) = -\alpha x u_\alpha(x). \tag{5.31}
$$

We obtain

$$
\frac{\|\partial_x u_\alpha\|}{\|u_\alpha\|} = \sqrt{2}\alpha \tag{5.32}
$$

This goes to infinity as $\alpha \to +\infty$. Thus, ∂_x is unbounded. Similarly, it is easy to show that the kinetic energy operator $-\nabla^2/2$ for a single particle is unbounded.

Eigenvalues may not exist

- In finite dimensions: Any matrix has an eigenvalue!
- (We did not mention this earlier, but true!)

Example 28: Shift operator

Let $V = \ell_2(N; \mathbb{C})$, the space of square summable sequencess $u = (u_i) \subset \mathbb{C}$ with complex coefficients. Let T be the *shift operator*:

$$
T(u_0, u_1, \cdots) = (0, u_0, u_1, \cdots).
$$

This operator has no eigenvalues, and it is an instructive exercise to show this. (See the exercises.)

Yesterday ...

: Spectral theorem for Hermitian operators

Suppose $A \in \mathbb{F}^{n \times n}$ is Hermitian, i.e., $A^H = A$. Then, there exists an orthonormal basis $\{u_1, \dots, u_n\}$, and real numbers $\{\lambda_1, \dots, \lambda_n\}$, such that

$$
A\mathbf{u}_i = \lambda_i \mathbf{u}_i
$$

Equivalently,

$$
A = \sum_{i=1}^{n} \mathbf{u}_i \lambda_i \mathbf{u}_i^H = U \Lambda U^H
$$

There exists an orthonormal basis such that A is just stretching of axes

where \mathbf{u}_i is the *i*th column of U, and where Λ is a diagonal matrix with elements $\Lambda_{ij} = \lambda_i \delta_{ij}$.

Spectrum "=" eigenvalues

• In finite dimensions spectrum is a discrete set:

Rough version of spectral theorem

• In finite dimensions:

$$
A = \sum_{i=1}^{n} \mathbf{u}_i \lambda_i \mathbf{u}_i^H
$$

• Infinite dimensions, using bra-ket notation ...

$$
A = \sum_{i=1}^{n} |u_i\rangle \lambda_i \langle u_i| + \int_{\sigma_c} d\lambda |\xi(\lambda)\rangle \lambda \langle \xi(\lambda)|
$$

Sobolev spaces

Useful for analysis of partial differential equations

Kinetic energy example

• Consider a single electron wavefunction:

 $\psi \in L^2(\mathbb{R}^3)$

• Kinetic energy:

$$
\langle \psi, \hat{T} \psi \rangle = \frac{\hbar^2}{2m} \int_{\mathbb{R}^3} \overline{\nabla \psi(\mathbf{r})} \cdot \nabla \psi(\mathbf{r}) d^3 r
$$

• All allowed states of electrons must have finite kinetic energy

Sobolev spaces

- Function spaces for *partial differential equations*
- Previously we had for example

$$
\psi \in L^2([a, b])
$$
 means that $\int |\psi(x)|^2 dx < +\infty$

• Can be useful to also require something on derivatives!

$$
\partial_x \psi \in L^2([a, b])
$$
 means that $\int \left|\frac{\partial}{\partial x} \psi(x)\right|^2 dx < +\infty$

• A simple Sobolev norm:

$$
||\psi||_{W^{1,2}} = ||\psi||_2 + ||\partial_x \psi||_2
$$

Example

• We consider a function sequence

$$
f_n \in L^2([-10, 10]),
$$
 $f_n(x) = e^{-x^2/2} \left(1 + \frac{1}{\sqrt{n}} \sin(nx)\right)$

Smaller and

smaller

oscillations

• Jupyter notebook: We compute *L* ² norms and *W*¹² norms

General definition

Definition 58: Sobolev space

Let $\Omega \subset \mathbb{R}^n$ be open. Let $p \in [1, +\infty]$ (including infinite). Let $u \in L^p(\Omega)$, and suppose u has weak derivatives up to order $k \ge 1$ that are also in $L^p(\Omega)$. Then we say that $u \in W^{k,p}(\Omega)$, a Sobolev space. The Sobolev space $W^{k,p}(\Omega)$ is a Banach space with norm

$$
||u||_{W^{k,p}} = ||u||_p + \sum_{\alpha, |\alpha| \le k} ||\partial_{\alpha} u||_p,
$$
\n(5.22)

where α denotes a partial derivative of order $\leq k$. [For example, order 1 means $\alpha \in \{1, \dots, n\}$, order 2 means $\alpha = (\alpha_1, \alpha_2)$ with $\alpha_i \in \{1, \dots, n\}$, and so on.]

Rayleigh-Ritz variational principle

- Recall unbounded operator only defined on *domain* $D(\hat{H})$
- *We need finite kinetic energy*

$$
E_{\text{ground state}} = \inf \left\{ \frac{\langle \psi, \hat{H}\psi \rangle}{\langle \psi, \psi \rangle} \middle| \psi \in D(\hat{H}) \right\}
$$

- Domain is a Sobolev spce!
- *Errors are best measured in Sobolev norms.*

The axioms of quantum mechanics

Using what we have seen so far

Classical configuration space

Electron spin associated with 2 copies of space!

• A single electron can be at any

$$
x = (\mathbf{r}, \sigma) \in \mathbb{R}^3 \times \{\uparrow, \downarrow\}
$$

• *N* electrons can be configured as

$$
(x_1, \dots, x_N) \in [\mathbb{R}^3 \times \{\uparrow, \downarrow\}]^N = X^N
$$

$$
X = \mathbb{R}^3 \times \{\uparrow, \downarrow\}
$$

Axiom 1: State space

- The states of a quantum system are (up to a global phase factor) *normalized elements in a separable Hilbert space*
- For a single electron:

Axiom 2: Observables

- Observables are represented by *self-adjoint operators over* H
- Examples:

Position: \hat{x} , \hat{y} , \hat{z} Momentum: $-i\hbar\partial_x$, $-i\hbar\partial_y$, $-i\hbar\partial_x$ Kinetic energy: $-\frac{\hbar^2}{2m}(\partial_x^2 + \partial_y^2 + \partial_z^2)$ Total energy: $\hat{H} = \hat{T} + \hat{V}$ Kinetic energy: $\hat{T} = -\frac{\hbar^2}{2m}(\partial_x^2 + \partial_y^2 + \partial_z^2)$

Axiom 3: Outcomes of measurements

• The outcomes of measurements of an observable A are the *spectral points* of the observable

• Immediately after the measurement, the wavefunction is *projected onto the corresponding eigenfunction* (wavefunction collapse)

Axiom 4: Born interpretation

• Recall the spectral decomposition:

$$
A = \sum_{i=1}^{n} |u_i\rangle \lambda_i \langle u_i| + \int_{\sigma_c} d\lambda |\xi(\lambda)\rangle \lambda \langle \xi(\lambda)|
$$

• The probability of obtaining an outcome in, e.g., $I = [\lambda, \lambda + d\lambda]$

$$
P(I) = \sum_{\lambda_i \in I} |\langle u_i, \psi \rangle|^2 + \int_I d\lambda |\langle \xi(\lambda), \psi \rangle|^2
$$

Axiom 5: Time evolution

• Between measurements, the state evolves according to the timedependent Schrödinger equation:

$$
i\hbar \frac{\partial}{\partial t}\psi(t) = \hat{H}\psi(t)
$$

- This is not rigorous!
- Stone's Theorem fixes this: Propagator is always well-defined:

$$
\psi(t) = \exp(-it\hat{H}/\hbar)\psi(0)
$$

• TDSE satisfied in a generalized sense