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Infinite Dimensions and
Functional Analysis



Functional analysis

 The study of (mostly) infinite dimensional vector spaces
 Hilbert, Banach (and more)
 Function spaces

* Linear transformations
* In infinite dimensions strange things happen!

 Applications:
* Quantum mechanics
« Partial differential equations
« Optimization and control theory



Examples of infinite

dimensions
‘0
e “
» The space of cake recipe ingredients list (from yesterday) Approximations "Bp |
 The space of all polynomials, unlimited degree of functions i

A space of sequences

seq ={c:N—>F}, c¢=(co,c1,¢2," ") " Forinfinite -
_ _ basis v
The space of square integrable functions SRS o

L2(RN) = { f:RN S5 C | f 0 dVx < +m} g B Quantum
BN

mechanics!

-



How to think about .

something like L*(R) o
* A function over R — infinite

number of values!
* \WWe can imagine an increasingly

long finite vector of samples

* In quant chem: a finite basis set of
functions

0.81

) = ) Unbn®) gy = > Yl
=1 =1



What distinguishes the examples?

 Consider the question:
 Which functions are close to each other?

e Use for different notions of ’closeness™
 Extremely valuable!



Hilbert and Banach spaces



Now it is getting a little
more abstract




A metric embodies concept of distance

Definition 22: Metric

Let M be a set. A function f : § X § — R 1s a metric if it satisfies the following axioms:

1. d(x,y) =d(y, x) symmetry
2. d(x,y) 20,and d(x,y) =0ifandonlyif x =y positivity and nondegeneracy
3. d(x,y) <d(x,2) +d(z,y) triangle inequality

The pair (M, d) 1s a metric space.



Norms embody concept of length

Definition 57: Norm

Anorm| | : V — R, = [0, +oo[ 1s a function that satisfies the following axioms:
1. ||x]| = 0, and ||x|| = O if and only if x = 0. positivity
2. |lax|| = |a||x]| absolute homogeneity
3. |lx+yll < |IxI + [[yll triangle inequality
d(x,y) =[x =yl

Norms define

metrics




Inner products give concept of angles

Definition 58: Inner product

An inner product {-,-) : V X V — F 1s a map which satisfies the following axioms:

1. {(x,x)>0, (x,x)=0ifandonlyifx=0 non-negative
2. {(x,ay+Bz) =a{x,y)+B{(x,2) linearity
3. {ay + Bz, x) = @y, x) + B{z, x) conjugate linearity
4. (x,y) =(y,Xx) hermitici

1/2 Inner products

dx,y) =|lx=yll=(x -y, x—y)

give metrics,
too




Two metrics in the plane (from norms)

d(x,y) = \/L‘Cl —yvi1l? + |x2 = y2/?

Euclidean metric
“as the crow flies” X

SN

d(x,y) = |x; = y1l + [x2 — ¥

Manhattan metric
“as the taxi drives”

ey



Definition 53: Banach and Hilbert space

A Banach space 1s a complete normed vector space. A Hilbert space 1s a complete inner product
space.

* In all cases, metric spaces
 The spaces of quantum mechanics, DFT, coupled-cluster theory ...
* Infinite dimensional (separable) Hilbert space: infinite orthonormal basis

() = ) Untu()
=1



What can we do with a Banach space?

1.

From norm to open sets
* “A topology”

—rom open sets to convergence of sequences, completeness
—-rom completeness to continuity of functions
Differentiability of functions

The metric/norm is the foundation for calculus,

vector calculus, calculus of variations ...




Spaces of functions

Here is an

f . Q — F example

: function
Boxes in n

dimensions

Intervals
are typical




LP spaces

*Forl <p<w

| L/p
J:Q-F WAl = (LU’(I}IF dx)

 This Is a Banach space:

L(Q:F) = {f: Q> FIfll, < +oo]



A notebook example

« How different norms measure closeness of functions.
e This shows us that different norms can be useful



More examples

« Banach space:
« Example:

CG[O, 1]={f:[0,1] - R | f continuous},

[F1]'= max |f(x)|

xe[0.1]

 Hilbert space:
« Example:

L*(Q:;C) = {f Q- C | j £ ()] dx < +cx:-}
€2

(fr8) = L f(0)g(x) dx



{,spaces

e Discrete versions of LP
oo I/p
u: N> F il = [Z |u,-f’]
=)

tp(N;F) = {u N = F | [ull, < +m}

A Hilbert space:

o

OHINGE),  (u,v)r = Zﬁﬂf’s

=1



The archetypal (separable) Hilbert space

 Recall that in finite dimensions, I[F"was the archetypal Hilbert space
* In Infinite dimensions:

(]
b =F", u=/u,upy-1], Z u;|* < +o0
=1

03

i=1
« All Hilbert spaces are isomorphic to this space, when an (infinite)
orthonormal basis is chosen



Linear transformations over Banach space

* In finite dimensions: all operators associated with matrices
* No longer true!
* Bounded vs. unbounded transformations

« Key feature:
* Bounded transformations are continuous
» Unbounded transformations are discontinuous
« Unbounded transformations usually not defined for all vectors



Definition 61: Bounded linear transformations

Let V and W be Banach spaces over F, and let D(T) C V be a linear subspace.LetT : V —» W
be a linear transformation, 1.e., for all u,v € D(T) and all @ € F,

T(au) = aTu,

and
Twu+v)=Tu+Thv.

The linear space D(T) is called the domain of T, and it may or may not be all of 7. Let ||T'||vw)
be the norm (“operator norm’) defined by

1T ullw

[lully

”T”L(V,W) = sup{ | O#uc D(T)} . (529)

If |7 vwy < +oo and D(T) = V, then T 1s a bounded, or countinuous, linear transformation
fromVitoW.



Example 26: Example of unbounded linear transformation

Let ¢,(N, R) be the space of square summable sequences of real numbers, i.e., u = (4,) C R
with

Z u> < +oo,
n=1

Let A be the operator that is defined by
(Au), = nu,,

1.e., each element in the sequence is multiplied by n. Let (e,), = .. be the sequence
which is zero everywhere except for the m’th position, where we have a 1. Then Ae,, =
0,0,0,--- ,m,---) where the m is in the m’th position. We have ||Ae,,|| = m, which grows
to infinity as m — +oo. Therefore A is not bounded.

Furthermore, the sequence given by u,, = n~! is square summable, that is,

lal® = > 172 < +oo.

n

However, Au = (1,1, 1,1,...) which is clearly not square summable. So A cannot be defined
on all of £,(N, R).




Example 27: Unbounded operator

Let u, € L*(R) be given by
u,(x) = N(@) exp(—ax’/2). (5.30)

Here, N(@) = (a/n)/* is such that ||u,|| = 1. Let D = 8,, and compute

Oy (X) = —axu,(x). (5.31)
We obtain 3
“”;"ﬁ” = V2o (5.32)

This goes to infinity as @ — +o0. Thus, d, 1s unbounded. Similarly, it is easy to show that the
kinetic energy operator —V?/2 for a single particle is unbounded.




Eigenvalues may not exist

* In finite dimensions: Any matrix has an eigenvalue!
 (We did not mention this earlier, but true!)

Example 28: Shift operator

Let V = {,(N;C), the space of square summable sequencess u = (¥;) C C with complex
coefficients. Let T be the shift operator:

T(uﬂsuls'”) = (0,“0,“1,"').

This operator has no eigenvalues, and it 1s an instructive exercise to show this. (See the exer-
ci1ses.)




Yesterday ... : Spectral theorem for Hermitian operators

Suppose A € F™" is Hermitian, i.e., A” = A. Then, there exists
an orthonormal basis {uy, - - - ,u,}, and real numbers {1, --- , 4,},

such that
Au; = 4w There exists an
Equivalently, orthonormal basis
n such that A is just
A = Z ui/lill,H — UANUH stretching of axes
=1

where u; 1s the ith column of U, and where A 1s a diagonal matrix
with elements A;; = 4;0;;.




Spectrum “=" eigenvalues

* In finite dimensions spectrum Is a discrete set:

° ® o o > R
A A2 A3 Ay
* In Infinite dimensions, possible with continua:
oq(A)
A o.(A)
( \
° oo o mmmmm-

A A2 Az Ay
Not eigenvalues, because
no eigenvectors!




Rough version of spectral theorem

* In finite dimensions:

* Infinite dimensions, using bra-ket notation ...

A=Y il + | dAEY AW
i=1 e



Sobolev spaces

Useful for analysis of partial differential equations



Kinetic energy example

 Consider a single electron wavefunction:
Y € L*(RY)
* Kinetic energy:

hZ

W, Ty = > f Vi (r) - Vi(r) dr
m R3

« All allowed states of electrons must have finite kinetic energy



Sobolev spaces

 Function spaces for partial differential equations
* Previously we had for example

W € L*([a,b]) means that flz,b(x)lz dx < 400

 Can be useful to also require something on derivatives!

o
O € L*([a,b]) means that fVIa—a,b()c)l2 dx < +00
X

* A'simple Sobolev norm:

w2 = gl + [10xll2



Smaller and

Example smaller

oscillations

* We consider a function sequence

£, € LX([-10,10]), fi(x)=e*7? (1 b — sin(nx))
\n

« Jupyter notebook: We compute L2 norms and W2 norms



General definition

Definition 58: Sobolev space

Let Q c R"” be open. Let p € [1, +00] (including infinite). Let u € L”(Q2), and suppose u has
weak derivatives up to order k > 1 that are also in LP(Q). Then we say that u € W*P(Q), a
Sobolev space. The Sobolev space W*P(Q) is a Banach space with norm

ldler = Nl + " 10ull, (5.22)
a,|la|<k
where a denotes a partial derivative of order < k. [For example, order 1 means a € {1,--- , n},

order 2 means a = (a1, az) with ; € {1, -- ,n}, and so on.]



Rayleigh-Ritz variational principle

» Recall unbounded operator only defined on domain D(H)
* We need finite kinetic energy

(Y,
(W

| Hy) :
Egruund state — lﬂf{ : ,!,) ‘ w = D(H)}

« Domain is a Sobolev spce!
e Errors are best measured in Sobolev norms.



The axioms of quantum
mechanics



Classical configuration space Electron spin

associated with 2

copies of space!

A single electron can be at any
x=(r,0) e R’ x {1, }

N electrons can be configured as
3 N N
(X],"',IN)E[R X{Tﬁl}] =X

X =R>x{T, ]



Axiom 1: State space

 The states of a quantum system are (up to a global phase factor)
normalized elements in a separable Hilbert space ¢

 For a single electron:

H = L*(X;C) = ¢ =W ¢)) € [L2RY)]?

A more general L2

space than
previously seen ...




Axiom 2: Observables

» Observables are represented by self-adjoint operators over F
« Examples:

i

Position: X, J, 2

All these are

Momentum: - ihd,, —ihd,, —ihd, unbounded
72 , , , operators ...
Kinetic energy: - E(E}I + 0y + 07)

Total energy: H=T +V

L A h?
Kinetic energy: T = —— (8% + 0 + 07)
2m yooos



Axiom 3: Outcomes of measurements

- The outcomes of measurements of an observable A are the spectral
points of the observable

oa(A)
/ : \
® oo o N>
A Ar A3 Aa

* Immediately after the measurement, the wavefunction Is projected
onto the corresponding eigenfunction (wavefunction collapse)

o(A)




Axiom 4: Born interpretation

 Recall the spectral decomposition:

A=) i) A il + f
i=1

o

dA1&(A)) AL{E(A)]

* The probability of obtaining an outcome in, e.qg., I = [A, A + dA]

P =Y 1) P+ | dal e, )F
!

Ael



Axiom 5: Time evolution

« Between measurements, the state evolves according to the time-
dependent Schrodinger equation:

L
ih=-y(0) = Ay (1)

* This Is not rigorous!
* Stone’s Theorem fixes this: Propagator is always well-defined:

W (t) = exp(—itH /A (0)

« TDSE satisfied in a generalized sense
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